On the local property of $\varphi-\left|A, p_{n}\right|_{k}$ summability of factored Fourier series

H. ÖZARSLAN, Ş. YILDIZ

Abstract

In this paper, a more general theorem concerning the local property of $\varphi-\left|A, p_{n}\right|_{k}$ summability of factored Fourier series has been proved. Also some new results have been obtained.

Keywords- Summability factors, absolute matrix summability, Fourier series, Hölder inequality

I. INTRODUCTION

Let $\sum a_{n}$ be a given infinite series with the partial sums $\left(s_{n}\right)$. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{align*}
P_{n}=\sum_{v=0}^{n} p_{v} & \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \\
\left(P_{-i}\right. & \left.=p_{-i}=0, \quad i \geq 1\right) . \tag{1}
\end{align*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{2}
\end{equation*}
$$

defines the sequence $\left(\sigma_{n}\right)$ of the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [12]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\Delta \sigma_{n-1}\right|^{k}<\infty \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \sigma_{n-1}=-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v}, \quad n \geq 1 . \tag{4}
\end{equation*}
$$

H. Özarslan is with the Mathematics Department, Erciyes University, 38038, Kayseri, Turkey
(e-mail:seyhan@erciyes.edu.tr).
Ş. Yıldız is with the Mathematics Department, Ahi Evran University, 40100, Kırşehir, Turkey
(e-mail:sebnemyildiz@ahievran.edu.tr).

In the special case, when $p_{n}=1$ for all values of n (resp. $k=1$), $\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as | $C,\left.1\right|_{k}$ (resp. $\left.\left|\bar{N}, p_{n}\right|\right)$ summability. Also if we take $k=1$ and $p_{n}=1 / n+1$, summability $\left|\bar{N}, p_{n}\right|_{k}$ is equivalent to the summability $|R, \log n, 1|$.
Let $A=\left(a_{n v}\right)$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s=\left(s_{n}\right)$ to $A s=\left(A_{n}(s)\right)$, where

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, \quad n=0,1, \ldots \tag{5}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $|A|_{k}, k \geq 1$, if (see [23])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty \tag{6}
\end{equation*}
$$

and it is said to be summable $\left|A, p_{n}\right|_{k}, k \geq 1$, if (see [22])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty \tag{7}
\end{equation*}
$$

where

$$
\bar{\Delta} A_{n}(s)=A_{n}(s)-A_{n-1}(s) .
$$

Let $\left(\varphi_{n}\right)$ be any sequence of positive real numbers. The series $\sum a_{n}$ is said to be summable $\varphi-\left|A, p_{n}\right|_{k}$, $k \geq 1$, if (see [19])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \varphi_{n}^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty . \tag{8}
\end{equation*}
$$

If we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$, then $\varphi-\left|A, p_{n}\right|_{k}$ summability reduces to $\left|A, p_{n}\right|_{k}$ summability. Also, if we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then we get $\left|\bar{N}, p_{n}\right|_{k}$ summability. Furthermore, if we take $\varphi_{n}=n, a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of $n, \varphi-\left|A, p_{n}\right|_{k}$ reduces to $|C, 1|_{k}$ summability. Finally, if we take $\varphi_{n}=n$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then we get $\left|R, p_{n}\right|_{k}$ summability (see [5]).

A sequence $\left(\lambda_{n}\right)$ is said to be convex if $\Delta^{2} \lambda_{n} \geq 0$ for every positive integer n, where $\Delta^{2} \lambda_{n}=\Delta\left(\Delta \overline{\lambda_{n}}\right)$ and $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$.
Let $f(t)$ be a periodic function with period 2π, and integrable (L) over $(-\pi, \pi)$. Without any loss of generality we may assume that the constant term in the Fourier series of $f(t)$ is zero, so that

$$
\begin{equation*}
\int_{-\pi}^{\pi} f(t) d t=0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
f(t) \sim \sum_{n=1}^{\infty}\left(a_{n} \operatorname{cosn} t+b_{n} \sin n t\right)=\sum_{n=1}^{\infty} C_{n}(t) \tag{10}
\end{equation*}
$$

where $\left(a_{n}\right)$ and $\left(b_{n}\right)$ denote the Fourier coefficients. It is well known that the convergence of the Fourier series at $t=x$ is a local property of the generating function f (i.e. it depends only on the behaviour of f in an arbitrarily small neighbourhood of x), and hence the summability of the Fourier series at $t=x$ by any regular linear summability method is also a local property of the generating function f (see [24]).
Before stating the main theorem, we must first introduce some further notations.
Given a normal matrix $A=\left(a_{n v}\right)$, we associate two lower semimatrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ as follows:

$$
\begin{equation*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots \tag{11}
\end{equation*}
$$

and

$$
\begin{array}{r}
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \tag{12}\\
n=1,2, \ldots
\end{array}
$$

It may be noted that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} . \tag{14}
\end{equation*}
$$

II. KNOWN RESULTS

Mohanty [17] demonstrated that the $|R, \log n, 1|$ summability of the factored Fourier series

$$
\begin{equation*}
\sum \frac{C_{n}(t)}{\log (n+1)} \tag{15}
\end{equation*}
$$

at $t=x$, is a local property of the generating function of $\sum C_{n}(t)$. Later on Matsumoto [15] improved this result by replacing the series (15) by

$$
\begin{equation*}
\sum \frac{C_{n}(t)}{\{\log \log (n+1)\}^{1+\epsilon}}, \quad \epsilon>0 \tag{16}
\end{equation*}
$$

Generalizing the above result Bhatt [2] proved the following theorem.

Theorem 1 If $\left(\lambda_{n}\right)$ is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent, then the summability $|R, \log n, 1|$ of the series $\sum C_{n}(t) \lambda_{n} \operatorname{logn}$ at a point can be ensured by a local property.
The local property problem of the factored Fourier series have been studied by several authors (see [1], [4], [6]-[7], [9]-[10], [13]-[14], [16], [18], [21]). Few of them are given above.
Furthermore, Bor [8] proved the following theorem in which the conditions on the sequence $\left(\lambda_{n}\right)$ are somewhat more general than Theorem 1.

Theorem 2 Let $k \geq 1$. If $\left(\lambda_{n}\right)$ is a non-negative and non-increasing sequence such that $\sum p_{n} \lambda_{n}$ is convergent, then the summability $\left|\bar{N}, p_{n}\right|_{k}$ of the series $\sum C_{n}(t) \lambda_{n} P_{n}$ at a point is a local property of the generating function f.

III. MAIN RESULTS

The aim of this paper is to prove a more general theorem which includes of the above results as special cases.
Now, we shall prove the following theorem.

Theorem 3 Let $k \geq 1$. If $A=\left(a_{n v}\right)$ is a positive normal matrix such that

$$
\begin{gather*}
\bar{a}_{n o}=1, n=0,1, \ldots \tag{17}\\
a_{n-1, v} \geq a_{n v}, \text { for } n \geq v+1, \tag{18}
\end{gather*}
$$

$$
\begin{equation*}
a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right) \tag{19}
\end{equation*}
$$

and $\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)$ be a non-increasing sequence. If all the conditions of Theorem 2 are satisfied and $\left(\varphi_{n}\right)$ is any sequence of positive constants such that

$$
\begin{equation*}
\sum_{v=1}^{m}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} p_{v} \lambda_{v}=O(1) \quad \text { as } \quad m \rightarrow \infty \tag{20}
\end{equation*}
$$

$\sum_{v=1}^{m}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} P_{v} \Delta \lambda_{v}=O(1) \quad$ as $\quad m \rightarrow \infty$,
then the summability $\varphi-\left|A, p_{n}\right|_{k}$ of the series $\sum C_{n}(t) P_{n} \lambda_{n}$ at a point is a local property of the generating function f.

We need the following lemmas for the proof of our theorem.

Lemma 4 If $\left(\lambda_{n}\right)$ is a non-negative and nonincreasing sequence such that $\sum p_{n} \lambda_{n}$ is convergent, where $\left(p_{n}\right)$ is a sequence of positive numbers such that $P_{n} \rightarrow \infty$ as $n \rightarrow \infty$, then $P_{n} \lambda_{n}=O(1)$ as $n \rightarrow \infty$ and $\sum P_{n} \Delta \lambda_{n}<\infty([8])$.

Lemma 5 Let $k \geq 1$ and $s_{n}=O(1)$. If $\left(\lambda_{n}\right)$ is a non-negative and non-increasing sequence such that $\sum p_{n} \lambda_{n}$ is convergent and the conditions (17)-(21) of Theorem 3 are satisfied, then the series $\sum a_{n} \lambda_{n} P_{n}$ is summable $\varphi-\left|A, p_{n}\right|_{k}$.

Proof of Lemma 5

Let $\left(I_{n}\right)$ denote the A-transform of the series $\sum_{n=1}^{\infty} a_{n} \lambda_{n} P_{n}$. Then, by (13) and (14), we have

$$
\bar{\Delta} I_{n}=\sum_{v=1}^{n} \hat{a}_{n v} a_{v} P_{v} \lambda_{v} .
$$

Applying Abel's transformation to this sum, we get that

$$
\begin{aligned}
\bar{\Delta} I_{n} & =\sum_{v=1}^{n} \hat{a}_{n v} a_{v} P_{v} \lambda_{v} \\
& =\sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v} \lambda_{v} P_{v}\right) \sum_{r=1}^{v} a_{r}+\hat{a}_{n n} \lambda_{n} P_{n} \sum_{v=1}^{n} a_{v} \\
& =\sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v} \lambda_{v} P_{v}\right) s_{v}+a_{n n} \lambda_{n} P_{n} s_{n} \\
& =\sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v}\right) \lambda_{v} P_{v} s_{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \Delta \lambda_{v} P_{v} s_{v} \\
& -\sum_{v=1}^{n-1} \hat{a}_{n, v+1} p_{v+1} \lambda_{v+1} s_{v}+a_{n n} \lambda_{n} P_{n} s_{n} \\
& =I_{n, 1}+I_{n, 2}+I_{n, 3}+I_{n, 4} .
\end{aligned}
$$

Since

$$
\begin{array}{r}
\left|I_{n, 1}+I_{n, 2}+I_{n, 3}+I_{n, 4}\right|^{k} \\
\leq 4^{k}\left(\left|I_{n, 1}\right|^{k}+\left|I_{n, 2}\right|^{k}+\left|I_{n, 3}\right|^{k}+\left|I_{n, 4}\right|^{k}\right)
\end{array}
$$

to complete the proof of Lemma 5 , it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \varphi_{n}^{k-1}\left|I_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 \tag{22}
\end{equation*}
$$

First, by applying Hölder's inequality with indices k and k^{\prime}, where $k>1$ and $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|I_{n, 1}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \lambda_{v} P_{v}\left|s_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \lambda_{v}^{k} P_{v}^{k}\left|s_{v}\right|^{k}\right\} \\
& \times\left\{\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1} a_{n n}^{k-1} \sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \lambda_{v}^{k} P_{v}^{k} \\
& =O(1) \sum_{v=1}^{m} \lambda_{v}^{k} P_{v}^{k} \sum_{n=v+1}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} \lambda_{v}^{k} P_{v}^{k} a_{v v} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} \lambda_{v}^{k} P_{v}^{k} \frac{p_{v}}{P_{v}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1}\left(\lambda_{v} P_{v}\right)^{k-1} p_{v} \lambda_{v} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} p_{v} \lambda_{v} \\
& =O(1) \text { as } m \rightarrow \infty \text {, }
\end{aligned}
$$

by virtue of the hypotheses of Lemma 5 and Lemma 4.
Now, using Hölder's inequality we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|I_{n, 2}\right|^{k} \\
\leq & \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| \Delta \lambda_{v} P_{v}\left|s_{v}\right|\right\}^{k} \\
= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|^{k} \Delta \lambda_{v} P_{v}\left|s_{v}\right|^{k}\right\} \\
& \times\left\{\sum_{v=1}^{n-1} \Delta \lambda_{v} P_{v}\right\}^{k-1} \\
= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1} \sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\hat{a}_{n, v+1}\right|^{k-1} \Delta \lambda_{v} P_{v}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1} a_{n n}^{k-1} \sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| \Delta \lambda_{v} P_{v} \\
& =O(1) \sum_{v=1}^{m} \Delta \lambda_{v} P_{v} \sum_{n=v+1}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left|\hat{a}_{n, v+1}\right| \\
& =O(1) \sum_{v=1}^{m} \Delta \lambda_{v} P_{v}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1}\left|\hat{a}_{n, v+1}\right| \\
& =O(1) \sum_{v=1}^{m}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} \Delta \lambda_{v} P_{v} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Lemma 5 and Lemma 4.
Again, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|I_{n, 3}\right|^{k} \\
\leq & \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| p_{v+1} \lambda_{v+1} s_{v}\right\}^{k} \\
= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1} \sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|^{k} p_{v} \lambda_{v} \\
\times & \left\{\sum_{v=1}^{n-1} p_{v} \lambda_{v}\right\}^{k-1} \\
= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1} \sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|^{k-1}\left|\hat{a}_{n, v+1}\right| p_{v} \lambda_{v} \\
= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1} a_{n n}^{k-1} \sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| p_{v} \lambda_{v} \\
= & O(1) \sum_{v=1}^{m} p_{v} \lambda_{v} \sum_{n=v+1}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left|\hat{a}_{n, v+1}\right| \\
= & O(1) \sum_{v=1}^{m} p_{v} \lambda_{v}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1}\left|\hat{a}_{n, v+1}\right| \\
= & O(1) \sum_{v=1}^{m}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} p_{v} \lambda_{v} \\
= & O(1) a s m^{a \rightarrow \infty} .
\end{aligned}
$$

Finally, since $P_{n} \lambda_{n}=O(1)$ as $n \rightarrow \infty$, we have that

$$
\begin{aligned}
& \sum_{n=1}^{m} \varphi_{n}^{k-1}\left|I_{n, 4}\right|^{k} \\
= & \sum_{n=1}^{m} \varphi_{n}^{k-1} a_{n n}^{k} \lambda_{n}^{k} P_{n}^{k}\left|s_{n}\right|^{k} \\
= & O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1} a_{n n}^{k-1}\left(\lambda_{n}\right)^{k-1} \lambda_{n} P_{n}^{k} \frac{p_{n}}{P_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1} a_{n n}^{k-1}\left(P_{n} \lambda_{n}\right)^{k-1} p_{n} \lambda_{n} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1} p_{n} \lambda_{n} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Lemma 5 and Lemma 4.
Therefore, we get

$$
\sum_{n=1}^{m} \varphi_{n}^{k-1}\left|I_{n, r}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty, \text { for } \quad r=1,2,3,4
$$

This completes the proof of Lemma 5 .

IV. PROOF OF THEOREM 3

The convergence of the Fourier series at $t=x$ is a local property of f (i.e., it depends only on the behaviour of f in an arbitrarily small neighbourhood of x), and hence the summability of the Fourier series at $t=x$ by any regular linear summability method is also a local property of f. Since the behaviour of the Fourier series, as far as convergence is concerned, for a particular value of x depends on the behaviour of the function in the immediate neighbourhood of this point only, hence the truth of Theorem 3 is a consequence of Lemma 5 .

V. CONCLUSIONS

Corollary 1. If we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$, then we get a theorem dealing with $\left|A, p_{n}\right|_{k}$ summability.

Corollary 2. If we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then we get a theorem dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability.

Corollary 3. If we take $a_{n v}=\frac{p_{v}}{P_{n}}$, then we have another result dealing with $\varphi-\left|\bar{N}, p_{n}\right|_{k}$ summability.

Corollary 4. If we take $a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of n, then we get a result dealing with $\varphi-|C, 1|_{k}$ summability (see [20]).

Corollary 5. If we take $\varphi_{n}=n, a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of n, then we get a result for $|C, 1|_{k}$ summability (see [11]).

REFERENCES

[1] S. Baron, "Local property of Fourier series", Tartu Riikl. Ül. Toimetised. Vih., 177, 1965, 106-120.
[2] S. N. Bhatt, "An aspect of local property of $|R, \operatorname{logn}, 1|$ summability of the factored Fourier series", Proc. Natl. Inst. Sci. India, 26, 1960, 6973.
[3] H. Bor, "On two summability methods", Math. Proc. Cambridge Philos Soc., 97, 1985, 147149.
[4] H. Bor, "Local property of $\left|\bar{N}, p_{n}\right|_{k}$ summability of factored Fourier series", Bull. Inst. Math. Acad. Sinica, 17, 1989, 165-170.
[5] H. Bor, "On the relative strength of two absolute summability methods", Proc. Amer. Math. Soc., 113, 1991, 1009-1012.
[6] H. Bor, "On the local property of $\left|\bar{N}, p_{n}\right|_{k}$ summability offactored Fourier series", J. Math. Anal. Appl., 163, 1992, 220-226.
[7] H. Bor, "Local Properties of Fourier Series", Int. J. Math. Math. Sci., 23, 2000, 703-709.
[8] H. Bor, "Localization of factored Fourier series", J. Inequal. Pure Appl. Math., 6, 2005, Article 40.
[9] H. Bor, "On the localization of factored Fourier series", Acta Univ. Appl., 24, 2010, 239-245.
[10] D. Borwein, "The non-local nature of the summability of Fourier series by certain absolute Riesz methods", Proc. Amer. Math. Soc., 114, 1992, 89-94.
[11] T. M. Flett, "On an extension of absolute summability and some theorems of Littlewood and Paley", Proc. London Math. Soc., 7, 1957, 113-141.
[12] G. H. Hardy, "Divergent Series", Oxford Univ. Press, Oxford, 1949.
[13] S. Izumi, "Notes on Fourier Analysis (VII)", Local properties of Fourier series, Tôhoku Math. J., 1, 1950, 136-143.
[14] M. Izumi and S. Izumi, "Localization problem of the absolute Riesz and absolute Nörlund summabilities of Fourier series", Canad. J. Math., 22, 1970, 615-625.
[15] K. Matsumoto, "Local property of the summability $|R, \lambda n, 1| "$, Tôhoku Math. J., 8, (2), 1956, 114-124.
[16] K. N. Mishra, "Multipliers for $\left|\bar{N}, p_{n}\right|$ summability of Fourier series", Bull. Inst. Math. Acad. Sinica, 14, 1986, 431-438.
[17] R. Mohanty, "On the summability $|R, \log \omega, 1|$ of Fourier Series", J. London Math. Soc., 25, 1950, 67-72.
[18] H. S. Özarslan, "A note on $\left|\bar{N}, p_{n}\right|_{k}$ summability factors", Int. J. Pure Appl. Math., 13, 2004, 485490.
[19] H. S. Özarslan and A. Keten, "A new application of almost increasing sequences", An. Ştiinț. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 61, 2015, 153-160.
[20] H. Seyhan, "The absolute summability methods", Ph. D. Thesis, Kayseri, 1995, 1-57.
[21] H. Seyhan, "On the local property of $\phi-$ $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ of factored Fourier series", Bull. Inst. Math. Acad. Sinica, 25, 1997, 311-316.
[22] W. T. Sulaiman, "Inclusion theorems for absolute matrix summability methods of an infinite series (IV)", Indian J. Pure Appl. Math., 34, (11), 2003, 1547-1557.
[23] N. Tanovič-Miller, "On strong summability", Glas. Mat. Ser III, 14, (34), 1979, 87-97.
[24] E. C. Titchmarsh, "The Theory of Functions", Oxford University Press, London, 1961.

